Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model
نویسندگان
چکیده
This paper describes a stress-strain interpolation method to model the macroscopic anisotropic elasto-plastic behavior of polycrystalline materials. Accurate analytical descriptions of yield loci derived from crystallographic texture [Int. J. Plasticity 19 (2003) 647; J. Phys. IV France 105 (2003) 39] are an interesting alternative to finite element models, where the macroscopic stress is provided by an averaging of microscopic stresses computed on a set of representative crystallites [Acta Metal 22 (1985) 923; Int. J. Plasticity 5 (1989) 67]. The parameters of the analytical functions modeling the yield locus are identified by comparison with a high number of stress tensors computed, for instance, by the well-known Taylor model [J. Inst. Metal 62 (1938) 307]. This identification method depends on the crystallographic texture and should be applied each time that the plastic strain has induced a significant texture evolution. The stress-strain interpolation method accurately describes the anisotropic material behavior in a narrow stress direction defined by only five stress points. The cost of texture updating is then greatly reduced compared to a full analytical function of the yield locus. After the mathematical description of the stress-strain interpolation method, its validity is demonstrated on two non-radial strain paths. The simulations of a deep drawing experiment allow comparing model predictions and measurements. Accuracy and CPU time of the interpolation stress-strain method are judged against two other models, respectively based on a complete analytical yield locus and on the averaging of crystallite stresses.
منابع مشابه
Elasto-plastic analysis of discontinuous medium using linearly conforming radial point interpolation method
In this paper, the linearly conforming enriched radial basis point interpolation method is implemented for the elasto-plastic analysis of discontinuous medium. The linear conformability of the method is satisfied by the application of stabilized nodal integration and the enrichment of radial basis functions is achieved by the addition of linear polynomial terms. To implement the method for the ...
متن کاملA framework for numerical integration of crystal elasto-plastic constitutive equations compatible with explicit finite element codes
In this paper we summarize the elements of a numerical integration scheme for elasto-plastic response of single crystals. This is intended to be compatible with large-scale explicit finite element codes and therefore can be used for problems involving multiple crystals and also overall behavior of polycrystalline materials. The steps described here are general for anisotropic elastic and plasti...
متن کاملDeep Drawing Simulations With Different Polycrystalline Models
The goal of this research is to study the anisotropic material behavior during forming processes, represented by both complex yield loci and kinematic-isotropic hardening models. A first part of this paper describes the main concepts of the ‘Stress-strain interpolation’ model that has been implemented in the non-linear finite element code Lagamine. This model consists of a local description of ...
متن کاملInelastic Continuum Modeling of Carbon Nanotube,s Behavior Using Finite Element Method
This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nanotube (SWCNT) in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the SWCNT, continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results, an elasto-plastic...
متن کاملFE-Based Analysis of Hot Forming Process Using the Flow Stress Prediction Model
In hot forming process, the workpiece undergoes plastic deformation at high temperature and the microstructure of the workpiece changes according to the plastic deformation. These changes affect the mechanical properties of workpiece. In order to optimize this process, both the plastic deformation of workpiece and its microstructural changes should be taken into consideration. Since material be...
متن کامل